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Abstract

A modified first order kinetic law, which describes the roles of bound and unbound vacancies, is

proposed in order to predict defect decay and short-range-order kinetics of quenched binary alloys

during linear heating experiments. The model has been applied to differential scanning calorimetry

(DSC) curves of Cu–5 at%Zn quenched from different temperatures. Activation energy for migra-

tion of solute-vacancy complexes was also assessed from the kinetics of short-range-order using

DSC traces. A value of 89.5±0.32 kJ mol–1 was obtained. The relative contribution of bound and un-

bound vacancies to the ordering process as influenced by quenching temperature was determined. In

conjunction, a parametric study of the initial total defect concentration and effective energy for de-

fect migration was performed in order to envisage their influence on the calculated DSC profiles.

Keywords: Cu–5 at%Zn, DSC, F.C.C. (Face Centered Cubic), kinetics, short-range-order, sol-
ute-vacancy complexes

Introduction

Different characteristics of short-range-order (SRO) in f.c.c. solid solutions have

been studied for a long time by diffuse scattering of X-rays [1–6], by small-angle

X-ray scattering [7], by electron microscopy and electron diffraction [8–12], by de-

termination of elastic and plastic properties [13–15] and strengthening and fatigue

properties [16–21], as well as by electrical resistivity [22–25] and thermal analysis

[13, 14, 18, 26–31].

Contrary to usual experiments on SRO kinetics after quenching from rather high

temperatures, some experiments are focused on the adjustment of the new equilibrium

state of SRO established after small and sudden temperature changes [32–36] and others

are now related with the influence of cold work [37–40]. Nevertheless, quenching experi-

ments still provide information about how excess vacancies frozen during the quench can

affect the alloy ordering kinetics [41–45]. For instance, differential scanning calorimetry

(DSC) of thermally disordered alloys reveals that short-range-ordering generally takes
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place in two stages, irrespective of the alloy system: stage-1, ordering at low tempera-

tures is associated with the migration of excess defects, and stage-2, ordering at higher

temperatures is due to the migration of equilibrium defects. It is worth noticing that in

some cases ordering is associated only with stage-1, as in the present study. The features

revealed by the DSC traces have been explained quantitatively [43], predicting the rela-

tive importance of each stage. Therefore, information was gained on the ordering process

itself and vacancy behaviour.

While solid solution alloy systems exhibiting SRO are rather extensively inves-

tigated [46], there are only few investigations of the role of solute-vacancy com-

plexes [47], which are determinant in explaining important features of several metal-

lurgical processes [48–52]. It is then important to examine the role of such complexes

in the ordering process, to the end of giving an account of the observed behaviour of

the differential scanning calorimetry traces displayed after specific experiments, in

which they are present.

Chiefly, the present work: (a) designs experiments which provide evidence of

solute-vacancy complexes in a one-stage ordering process (b) discloses a model that

predicts the return of unbound and bound vacancies to equilibrium, describing also

the kinetics of reordering (c) tests its validity for Cu–5 at%Zn, (d) from this model ac-

tivation energy for migration of bound vacancies can be assessed using DSC data and

(e) performs a parametric study of the initial total defect concentration and effective

activation energy for defect migration in order to establish their influence on calcu-

lated DSC profiles.

Theoretical considerations

Freezing defect concentration after quenching

Firstly it is worth pointing out in this section that during quenching, unbound and

bound vacancies can migrate because the cooling rate is finite in practical experi-

ments. Above the freezing temperature Tz, the reactions between the defects are con-

sidered to be in the thermal dynamical equilibrium because they are fast enough to

maintain it between them during quenching from temperature Tq, as profusely re-

ported [53–57]. Even if bound vacancies become less mobile dynamic equilibrium

exists assisted only by the association/dissociation mechanism.

One of the aims of this section is to assess the relative concentration of bound

vacancies after quenching and also to investigate their redistribution at the beginning

of a DSC run after small transient periods have elapsed [53–57].

In fact, for moderate diluted alloys, we will be dealing with in the present work [58]:
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where cu and cb are the unbound and bound vacancy concentrations, Z is the coordina-

tion number, xt is the solute concentration and B is the solute-vacancy binding energy.

Thus, in ct is the total defect concentration, one has:
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where ψb (T) is here termed the equilibrium transfer function.

As dynamical equilibrium exists during quenching [53–57], the concentrations

cb(Tz) and cu(Tz) at the freezing temperature can be readily calculated from:

cb(Tz) = ct(Tz)ψb(Tz) (4)

and

cu(Tz) = ct(Tz)(1–ψb(Tz)) (5)

The freezing temperature Tz can be estimated from [43]
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where τ0=10–6 s [43] and φq is the cooling rate. It should be pointed out that the more

mobile unbound vacancies with migration energy Em determine Tz. Since for this al-

loy concentration cb is close to cu, separating from each other somewhat with increas-

ing temperature [58], it is safe to take as a first approximation and average activation

energy for defect formation and hence.
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where Eef=Ef–B/2 and As≈2 [43].

Unbound and bound vacancy redistribution after de-freezing

At the de-freezing temperature Ti, where the same ordering condition as that at Tz (the

freezing temperature) prevails, a short transient period begins in which a redistribu-

tion of unbound and bound vacancies takes place. It is assumed that at temperature Tc,
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the measured extrapolated peak onset temperature, these short transient effects just

vanish but the total defect concentration still remains the same as at Tz, Ti and Te

[53, 54]. After redistribution of unbound and bound vacancies have taken place a

pseudo-equilibrium state is established between them [53, 54]; all defects decay to a

negligible value at a rate governed by their kinetic path when the final trace tempera-

ture is reached at Tf (all these temperatures are illustrated in Fig. 1), since we will be

concerned in this work with one stage ordering assisted by excess defects. That is,

true equilibrium is reached at Tf where also equilibrium concentration of thermal de-

fects can be disregarded. It is worth noticing that the term pseudo-equilibrium was

also employed here as in other works [53–55], because if the run is interrupted at cer-

tain arbitrary temperature between Te and Tf, the instantaneous defects concentration

decrease isothermally to zero with time along the corresponding kinetic path in equi-

librium between them. This concept is different to dynamic equilibrium, which is a

true equilibrium state taking place while changing temperature.

As said before, it was assumed that one criterion for determining the transient

range temperature is to measure the temperature interval ∆T=Te–Ti, since it is not pos-

sible to assess its temperature range with higher accuracy. However, it is reasonable

to assume that the larger the defect redistribution is the larger the interval ∆T is. In

general calorimetric methods are not able to detect heat effects taking place during

these short transients at constant total defect concentration, as resistivity measure-

ments are. Furthermore, it is worth noticing that one indication that transients would

take place between Ti and Te is that (Ti–Te)/φr>tt, being φr the heating rate and tt the

transient time period. It is likely that this unequality actually remains under our ex-

perimental conditions, since tt≈8 s on an isothermal annealing at 453 K [55]. There-

fore, the pseudo-equilibrium concentration of defects after this transient period can

be stated in a first approximation as:

Ct(Tz) = ct(Ti) = ct(Te) (8)
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Fig. 1 DSC curves for Cu-5 at% Zn quenched from the indicated temperatures.
φr=0.33 K s–1. Initial (Ti), extrapolated onset (Te), and final (Tf) temperatures are
indicated



cb(Te) = ct(Tz)ψb(Te) (9)

cu(Te) = ct(Tz)(1–ψb(Te)) (10)

Notice that the assumption ct(Tz) = ct(Ti) = ct(Te) stated above is used. That is,

the total defect concentration before transient was in principle the same as the one,

which exists immediately after the transient behaviour, vanishes [53, 55]. However,

cu and cb redistribute each other during the temperature interval ∆T.

Effective rate constant for SRO

The effective activation energy for defect migration is a weightened average value

between those of unbound and bound vacancies, that is:

E = (1–α)Em+αEc (11)

where Ec is the activation energy for migration of solute-vacancy complexes and α is

a strengthening factor. If, theoretically, all defect transport would occur by bound va-

cancies, which is not the case [59], α=1, on the contrary for unbound vacancy trans-

port only, α=0. The value of α is constant along the DSC run if E also is. Besides, it is

worth noticing that Ec is a mean quantity since it is well known that the mobility of

solute-vacancy pairs depends on the frequency of vacancy jumps around the solute

atom, as well as on the frequency of solute-vacancy exchanges. Therefore, there is

not a unique activation energy.

The effective rate at which order is established for a point defect mechanism,

which is supposed to include bound and unbound vacancies, is related to the total in-

stantaneous defect concentration ct, and to the effective mean rate at which defect

atom exchange occurs, that is by

kt(T) = ct(T)νt(T) (12)

in which

ν νt ot( ) expT
R

RT
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 (13)

νot being the effective jump frequency constant, T the absolute temperature, and R the

universal gas constant. Here it will be considered that ct = cu+cb with cu and cb equal to

the unbound and bound vacancy concentrations. Now, for simultaneous unbound and

bound vacancy mechanisms the effective rate constant can be stated as:

kt = νucu+νbcb (14)

where νu and νb are the jump frequencies of unbound and bound vacancies, that is

[60]:

νt(cu+cb) = νucu+νbcb (15)
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The idea contained in Eq. (15) is that the entire population of vacancies, un-

bound and bound, is assigned one effective jump frequency, νt, which is obtained as a

weightened sum of simpler jump frequencies describing individual processes. From

Eqs (2), (3) and (15) one has:

νt = νu(1–ψb(T))+νbψb(T) (16)

The simplier jump frequencies are given by:
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The attempt frequency νom is considered to be the same for unbound and bound

vacancies [60]. Therefore, the effective attempt frequency can be safely taken also as

νom=12ν0exp(∆Sm/R) for f.c.c. alloys, where ν0 is the Debye frequency and ∆Sm the ac-

tivation entropy for free vacancies [45].

Effective defect decay and short-range ordering kinetics

Here we consider that sink strengths of bound and unbound vacancies are the same and

the total vacancy supersaturation follows a first order kinetic path, as expected from its

elimination at fixed sinks [61]. It is also assumed that at the end of the DSC trace at Tf,

equilibrium is attained and the total defect concentration ct

eq =0 since ct(Tz)>> ct

eq
(Tf), as

long as we are concerned with one stage ordering process. Furthermore, the present anal-

ysis implies solute-vacancy complexes production and dissolution during the run, since

the above-mentioned state of pseudo-equilibrium prevails in the alloy during the heating

process. Using the effective vacancy jump frequency νt, defect supersaturation, formally

defined as S = (ct(T)– ct

eq
)/ (ct(Tz)– ct

eq
), decays according to:
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where φr is the heating rate and kd = νtρt, the rate constant which is of Arrhenius type,

ρt is the effective sink density. ρt is given by:

ρt = ρd+ρg (20)

where ρd, the sink density for dislocations can be obtained from:
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being rs equal to the average distance between dislocations, rc the capture radius of a

dislocation, δ the dislocation density and b the atom jump distance. For grain bound-

aries, the sink density ρg is given by:

ρ λ
g =

L2
(22)

where λ = a0

2/12 for f.c.c. metals, a0 is the lattice parameter and L the grain size.

Using the definition of S given before and considering roughly as a first approxima-

tion that ct

eq
= 0, integration of Eq. (19) yields:
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or:

ct(T) = ct(Tz)exp[–(ρd+ρg)ν0mθ(E,T)] (24)

where θ, the reduced time, is given by [62–64]:
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Furthermore, it has been demonstrated [47] that the formation of solute-vacancy

pairs occurs on the quick time scale for vacancy relaxations, and for most purposes

the number of such pairs can be assumed to be in equilibrium with the state of chemi-

cal order in the alloy.

From the above analysis it is inferred that defect decay concentrations should

permanently adjust through the transfer function ψb(T) to maintain pseudo-equilib-

rium between them along the DSC run. Henceforth, its decay kinetics follows the re-

lationship:

cb(T) = ct(T)ψb(T) (26)

and

cu(T) = ct(T)[1–ψb(T)] (27)

It should be kept in mind that these equations and also Eq. (24) give approximate

determinations, since in their derivation the composite quantity νt is involved, which

is an effective jump frequency. Decay defect curves will be shown later on in a sec-

tion concerning numerical results for different quenching temperatures, previous de-

termination of the effective activation energy E as will be assessed from non-iso-

thermal short-range ordering kinetic analysis.

As long as the ordering process can be described by a first-order like kinetic law,

as can be done for most binary alloy systems [65], the differential equation for the

transformed fraction y under a linear heating becomes:
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where kt = νtct is the rate constant. Unlike kd, constant kt is not of Arrhenius type. Inte-

gration of Eq. (28) yields:
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From Eqs (13), (24) and (25) after some modifications, Eq. (29) can be written

as:
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where the function FE(T) is given by:
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Adjustment of Eq. (30) to each experimental y vs. T curve can be made numeri-

cally with E as a disposable parameter. Thus, the best fit allows to determine the ef-

fective activation energy for defect migration based on a distributed function along

the DSC temperature interval. Once E is determined for each quenching temperature

calculated bound, unbound and total vacancy concentration curves can be plotted

against temperature scanned in DSC traces.

An activation energy value for migration of vacancy-solute complexes can be

assessed from:
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Numerical adjustment of Eq. (32) to each experimental curve with Ec as a dis-

posable parameter gives activation energies for solute-vacancy complexes. As it will
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be seen later on, such values approach an average one which is essentially insensitive

to the quenching temperature.

In the following, we will evaluate – by means of DSC – ordering kinetics and de-

fect decay concentrations in a high rate quenched copper–zinc solid solution from

different temperatures where equilibrium SRO is reached in one stage during a DSC

experiment.

Numerical application concerning Cu–5 at%Zn

The alloy studied contained 5.1 mass% zinc (99.97 mass%). It was prepared in a

Baltzer VSG 10 vacuum induction furnace from electrolytic copper (99.95 mass%) in

a graphite crucible. The ingot was subsequently forged at 923 K to a thickness of

10 mm, pickled with a solution of nitric acid (15% in distilled water) to remove sur-

face oxide, annealed in a vacuum furnace at 1123 K for 36 h to achieve complete ho-

mogeneity, and cooled in the furnace to room temperature. It was then cold-rolled to a

thickness of 1.5 mm with intermediate annealing periods at 923 K for 1 h. After the

last anneal, the material was finally rolled to a thickness of 0.75 mm (50% reduction).

Subsequent heat treatments were performed at different temperatures for 1 h,

followed by quenching in a high rate quenching device developed in our laboratory.

The quench time was measured with an oscilloscope and estimated in 200 ms. Such

high quench rates were used in order to promote a one stage ordering process via an

excess of unbound and bound vacancies from all selected quenching temperatures.

That is, by minimizing defect losses during the quench, sufficient defects in excess

are available to reach an equilibrium state of short-range-order. Otherwise, reorder-

ing involves two stage processes, the first assisted by excess defects and the second

by equilibrium defects [41, 42]. A one-stage process facilitates to visualize the roles

of unbound and bound vacancies.

Microcalorimetric analysis of the samples was performed in a DuPont 2000

thermal analyzer. Specimen discs 0.75 mm in thickness and 6 mm in diameter were

prepared. Differential scanning calorimetric measurements of the heat flow were

made by operating the calorimeter in the constant heating rate mode. Runs were made

from room temperature to 740 K. To increase the sensitivity of the measurements, a

high purity, well-annealed copper disc, in which no thermal events occur over the

range of temperatures scanned, was used as a reference. In order to minimize oxida-

tion, dried nitrogen (0.8⋅10–4 m3 min–1) was passed through the calorimeter. The base-

line was determined in the following way. After each test, the data were converted to

a differential-heat-capacity vs. temperature using a previously established calibration

for the DSC cell. Subsequently a linear baseline was subtracted from the data. This

baseline represents the temperature dependent heat capacity of the Cu–Zn solid solu-

tion in the existing thermal condition and its value was in agreement with the Kopp–

Newmann rule. Heat capacity remainder, namely ∆Cp represents the heat associated

with the solid-state reactions that take place during the DSC run.
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DSC measurements and the role of solute-vacancy complexes in the ordering
process

Typical DSC curves for the alloy under study at the indicated quenching temperatures

are shown in the differential heat capacity ∆Cp vs. temperature T curves at a heating

rate φr=0.33 K s–1 in Fig. 1. The initial temperature Ti, the extrapolated onset

post-transient temperature Te and the final temperature Tf are indicated in the curve

corresponding to the quenching temperature of 773 K. In all cases they are character-

ized by one exothermic peak, namely stage 1 and one endothermic peak, stage 2.

Stage 1 has been reported in the literature in connection with short-range order devel-

opment assisted by excess defects, while stage 2 has been associated with a disorder-

ing process [44, 45]. It can be observed that in the present type of experiments (high

quench rates), all stages shift to higher temperatures as the quenching temperature de-

creases. Stage 1 and 2 shifting will be associated with the relative increased contribu-

tion of solute-vacancy complexes as quenching temperature is lowered. The enthalpi-

metric features of these curves will be considered in a later work as they are not

directly involved with the scope of the models developed here.

The contribution of bound and unbound vacancy concentrations before peak ini-

tiation can be readily computed by means of Eqs (4) and (5), utilizing the equilibrium

transfer function ψb(Tz) at freezing temperature Tz calculated from Eq. (6), after esti-

mation of ct(Tz) from Eq. (7). The value of solute-vacancy binding energy was taken

as B = 21.8 kJ mol–1 [44]. Cooling rates were calculated from φq= (Tq–T0)/tq, where

the quench-in temperature was T0= 273 K. A quench time tq= 200 ms was estimated

as stated earlier. These quenched-in defect concentrations ct(Tz), cu(Tz) and cb(Tz) as a

function of the quenching temperature are shown in Fig. 2. It can be observed that the

relative importance of cb with respect to cu increases as the quenching temperature is

decreased and that all defect concentrations are decreased when this temperature also

is, as expected. The relative importance of bound vacancies involved at the beginning

of the ordering process described by (cb/cu)Te increase as the ratio (cb/cu)Tz also does,
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Fig. 2 Bound (cb), unbound (cu) and total vacancy concentration (ct) at freezing temper-
ature as a function of quenching temperature



that is, when Tq is decreased as shown in Fig. 3. These results are also in agreement

with the observed increase in effective activation energies and peak temperatures

when Tq is lower as shown later on.

The influence of quenching temperature on the transient temperature interval,

after de-freezing at the beginning of DSC runs will be briefly discussed. This can be

done with reference to Fig. 4. In this figure the ratio of bound to unbound vacancies at

the freezing temperature is plotted vs. the temperature interval ∆T = Te–Ti. If quench-

ing temperature increases, Tz value also does so while (cb/cu)Tz decrease (Fig. 2); its

value becoming further away from pseudo-equilibrium value which would be estab-

lished at Te. Hence, in order to accomplish with such pseudo-equilibrium state a

larger defect redistribution and consequently a larger temperature interval is required.

On the contrary, if Tq and then Tz are lower, (cb/cu)Tz increases and the defect ratio is

closer to that required at Te, hence a shorter temperature interval is needed to display

the transient period.
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Fig. 3 Ratio of bound to unbound vacancy concentration at Te vs. the same ratio at Tz

Fig. 4 Ratio of bound to unbound vacancy concentration at Tz vs. the transient tempera-
ture interval ∆T



Ordering kinetics and defect annihilation

Before computing short-range-order kinetics and defect decay curves according to

Eqs (30), (32) and (24) sink density for dislocations and grain boundaries must be es-

timated together with other alloy parameters. For a typical annealed material the dis-

location density is δ = 107 cm–2 [43]. For this value the term 2πb2/ln(rs/rc) or Eq. (21),

which is relatively insensitive to the dislocation density for annealed alloys was

4.4⋅10–16 cm2 and hence ρd = 4.4⋅10–9. The measured grain size was L = 100 µm,

a0= 0.36 nm and λ = 1.1⋅10–16 cm2, thus from Eq. (22) ρg= 1.1⋅10–12, which is negligi-

ble compared with ρd for the above grain size. Calculation of ct(Tz) was made using

Ef= 101.7 kJ mol–1 [65]. An activation energy for unbound vacancies Em= 80 kJ mol–1

was estimated [44] and ρ0t= ρ0m= 4.3⋅1014 s–1 was taken [44].

In Fig. 5 the FE(T) function given by Eq. (31) is plotted against temperature for

different values of the effective activation energy for defect migration. As can be seen
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Fig. 5 Function FE(T) vs. temperature for different E values in kJ mol–1; 1 – 80;
2 – 81.9; 3 – 83; 4 – 84.2; 5 – 86 and 6 – 90 kJ mol–1

Fig. 6 Experimental and model based reacted fractions, y, during DSC runs at
φr= 0.33 K s–1 in samples quenched from the indicated temperatures for different
values of the effective activation energy for defect migration in kJ mol–1



FE(T) is not a function of the quenching temperature and hence of the freezing tem-

perature. Such a function can be easily integrated graphically in the temperature in-

terval 0–T. Figure 6 shows the experimental reacted fractions for Tq= 873 and 1123 K

obtained from the corresponding curves as y = at/A, where at is the area under peak to

temperature T and A is the total area of the peak. Also calculated y vs. T curves are

shown for different values of E obtained from Eq. (30). It can be observed that the

best fit is different for both quenching temperatures, reflecting the relative impor-

tance of unbound and bound vacancies as a function of temperature. Values of E as

related to the quenching temperatures were plotted in Fig. 7, but instead of Tq, ct(Tz)

values were employed for convenience as shown later on. It can be noticed that E val-

ues slightly decrease with increasing Tz which is a consequence of the lower relative

concentration of bound vacancies at higher Tq values.

Activation energy for migration of bound vacancies Ec is obtained from the

function Fc(T) shown in Fig. 8, which can be readily integrated graphically in the

temperature range 0–T similarly to Fe, and the best fitted y vs. T curves to the experi-

mental ones obtained from the corresponding curves. These y vs. T curves are shown

for Tq= 873 and 1123 K in Fig. 9. If such curves are plotted for other quenching tem-

peratures it is verified that Ec is relative insensitive to Tq. An average of

Ec = 89.5±0.32 kJ mol–1

was obtained from four best adjusted values to experimental y vs. T curves. Alterna-

tive treatments for obtaining Ec were recently given [66, 67].

Defect decay curves can be evaluated from the already known values of E.

These curves are shown for Tq= 873 and 1123 K in Fig. 10. The concentration cu and

cb fall down to zero in pseudo-equilibrium during the DSC scan. Initial boundary val-

ues were obtained from the corresponding ct(Tz) values calculated from Eq. (7) and

also from Eqs (9) and (10). Such results are consistent with the one stage ordering

shown in the curves of Fig. 1, that is the ordering process is established only by ex-

cess defects.
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Fig. 7 Effective activation energy E as a function of total defect concentration at freez-
ing temperatures
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Fig. 9 Experimental and model based reacted fractions, y, during DSC runs at
φr=0.33 K s–1 in samples quenched from the indicated temperatures for the same
values of Ec as those of Fig. 8

Fig. 10 Bound, unbound and total vacancy concentration decay curves during DSC runs
at φr=0.33 K s–1 after quenching from the indicated temperatures. The experi-
mental SRO reacted fractions y are also shown

Fig. 8 Function Fc(T) vs. temperature for different Ec values. 1 – 80; 2 – 85; 3 – 89.5
and 4 – 95 kJ mol–1



It is worth recalling that even if SRO effects are not larger in this diluted alloy,

the heat evolved during DSC runs should correspond to the return of SRO. If one sup-

poses as a first approximation that the heat measured in the curve for an alloy

quenched from 973 K, which is about 52 J mol–1 (Fig. 1), would correspond to the an-

nealing of quenched-in vacancies, by taking an effective energy of formation of va-

cancies roughly as Ef–B/2 = 91.8 kJ mol–1 a quenched-in vacancy concentration ex-

tremely high of 5.6⋅10–4 is calculated, which results are unrealistic for that quench

temperature. So, the exothermic peaks observed would be associated unequivocally

with SRO. The main reason for employing a diluted alloy within the scope of the

present work is that the equilibrium equation between cu and cb has restrictions in its

use in concentrated alloys, thus turning less rigorous the kinetic analysis.

Finally, in order to get a global insight of the role of the different variables gov-

erning the curve profiles, simulated DSC traces (dy/dt)–T–ct(Tz) are shown in Fig. 11

using the functional dependence of E with ct(Tz), which appears graphically in Fig. 7.

Peak temperatures in Fig. 11 are in very good agreement with those measured in the

curves of Fig. 1.

Conclusions

This study leads to the conclusion that the relative importance of solute-vacancy

complexes can be quantified by a simple modified first kinetic law model which pre-

dicts defect decay concentrations in conjunction with ordering kinetics of quenched

alloys during non-isothermal experiments. Comparison of the model based kinetic

paths with the experimental ones shows good consistency in Cu–5 at%Zn. Also from

ordering kinetic evaluations, the effective activation energy for defect migration and

the activation energy for migration of bound vacancies were determined giving quite

reasonable values. The relative contribution of bound vacancies to the SRO process

becomes more important when quenching temperature decreases as assessed theoreti-

cally and observed experimentally. Generated DSC profiles give good concordance

with the experimental DSC traces obtained for this alloy.
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Fig. 11 Generated DSC curves for Cu-5 at% Zn with different initial total defects con-
centration at freezing temperatures. Heating rate φr=0.33 K s–1
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